National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Comparison of modal properties of steam turbine impeller with blades of different lengths
Havlásek, Michal ; Chromek, Lukáš (referee) ; Lošák, Petr (advisor)
The presented master's thesis deals with the safety assessment of several variants of the impeller with different blades length. The motivation for creating this thesis is to find the solution of the problem situation which is characterized by the breakdown of the steam turbine impeller with blades length of 30mm. As confirmed in this thesis, the impeller with blades length of 30mm is operated in the resonance. Likewise, according to the technical standard ČSN EN ISO 10437 its operation is not safe. As the correction action for the problem situation solving is proposed the prolongation of the impeller's blades. The safety is detected for six variants of impeller with dierent blades length. For each variant, there is executed a modal analysis and its results are drawn up into the Campbell diagram. On the basis of this diagram, the safety of individual components is evaluated. The last part of the masters thesis concerns with the examination of the influence of blades length on the modal properties of the impeller.
Modal analysis of turbine wheel for aircraft engine
Drahý, Jan ; Nehybka, Jindřich (referee) ; Malenovský, Eduard (advisor)
The master thesis deals with modal analysis of turbine wheel of aircraft engine. The first part is concerned with the modal analysis of the computational model of turbine wheel and separated turbine blade using the cyclic symmetry of the ANSYS software. This part of the thesis set the task of determining the natural frequency depending on the operating parameters of the motor. The second part of the thesis occupies with the experimental simulation of the task. The results of experimental simulation are verified and compared with the results from the computational modal analysis. The goal is to create a Campbell diagram and to determine the intervals of the critical revolution of the turbine wheel.
Frequency analysis of the blades of the steam turbine impeller
Krejčí, Jaroslav ; Chromek, Lukáš (referee) ; Lošák, Petr (advisor)
The master thesis deals with modal analysis of the blade of the steam turbine impeller. This analysis is made to find the frequency response of the blade in order to predict the dangerous speeds of the steam turbine. At first the problem situation is described. Than follows the research study which is focused on steam turbines and especially on the rotor dynamic systems and the way to ascertain the modal parameters of the dynamic system by experiment. After that the solution of the problem is performed by computational modelling. The results of the computation are analyzed in detail for different variations of the blade length by Campbell diagram. A graph showing dependency between dangerous speeds of the turbine and the blade length is made out of the results. Then the results are verified by experiment and the coefficients of proportional damping are specified. In conclusion the optimal variation of the blade length for the given operational state is determined.
Response of atypical vertical rotor of a water turbine to excitation by impeller imbalance and generator rotor imbalance
Sitte, David ; Houfek, Lubomír (referee) ; Fuis, Vladimír (advisor)
This master’s thesis deals with the dynamic behaviour of vertical Francis turbine, which is atypical its shaft length. In the first part of thesis, there is theoretic research of water turbine, which is followed by derivation of equations for the Stodola rotor. The second part deals with the creation of the turbine shaft in 1D and 3D. A modal analysis was performed in the ANSYS Workbench software, based on which the Campbell diagram is created and it was determined the critical speed. And the harmonic analysis from which was determined the forces response in radial bearings, amplitude of deviation in radial direction in the turbine impeller and the generator and the axial displacement located in turbine impeller and axial bearing. 1D and 3D solutions were compared between themselves.
Methodology of calculation of critical speed of rotating electrical machines
Sedláček, Jan ; Donát, Martin (referee) ; Dušek, Daniel (advisor)
This Master thesis describes the design of methodology for calculating the critical speed of rotating electric machines. The aim is to build finite element model of rotor system model, determine the natural frequencies to plot Campbell diagram and use this diagram to obtain the critical speeds. The Matlab software is used for this purpose and the Ansys software is used for verify the calculation.
Response of atypical vertical rotor of a water turbine to excitation by impeller imbalance and generator rotor imbalance
Sitte, David ; Houfek, Lubomír (referee) ; Fuis, Vladimír (advisor)
This master’s thesis deals with the dynamic behaviour of vertical Francis turbine, which is atypical its shaft length. In the first part of thesis, there is theoretic research of water turbine, which is followed by derivation of equations for the Stodola rotor. The second part deals with the creation of the turbine shaft in 1D and 3D. A modal analysis was performed in the ANSYS Workbench software, based on which the Campbell diagram is created and it was determined the critical speed. And the harmonic analysis from which was determined the forces response in radial bearings, amplitude of deviation in radial direction in the turbine impeller and the generator and the axial displacement located in turbine impeller and axial bearing. 1D and 3D solutions were compared between themselves.
Frequency analysis of the blades of the steam turbine impeller
Krejčí, Jaroslav ; Chromek, Lukáš (referee) ; Lošák, Petr (advisor)
The master thesis deals with modal analysis of the blade of the steam turbine impeller. This analysis is made to find the frequency response of the blade in order to predict the dangerous speeds of the steam turbine. At first the problem situation is described. Than follows the research study which is focused on steam turbines and especially on the rotor dynamic systems and the way to ascertain the modal parameters of the dynamic system by experiment. After that the solution of the problem is performed by computational modelling. The results of the computation are analyzed in detail for different variations of the blade length by Campbell diagram. A graph showing dependency between dangerous speeds of the turbine and the blade length is made out of the results. Then the results are verified by experiment and the coefficients of proportional damping are specified. In conclusion the optimal variation of the blade length for the given operational state is determined.
Comparison of modal properties of steam turbine impeller with blades of different lengths
Havlásek, Michal ; Chromek, Lukáš (referee) ; Lošák, Petr (advisor)
The presented master's thesis deals with the safety assessment of several variants of the impeller with different blades length. The motivation for creating this thesis is to find the solution of the problem situation which is characterized by the breakdown of the steam turbine impeller with blades length of 30mm. As confirmed in this thesis, the impeller with blades length of 30mm is operated in the resonance. Likewise, according to the technical standard ČSN EN ISO 10437 its operation is not safe. As the correction action for the problem situation solving is proposed the prolongation of the impeller's blades. The safety is detected for six variants of impeller with dierent blades length. For each variant, there is executed a modal analysis and its results are drawn up into the Campbell diagram. On the basis of this diagram, the safety of individual components is evaluated. The last part of the masters thesis concerns with the examination of the influence of blades length on the modal properties of the impeller.
Methodology of calculation of critical speed of rotating electrical machines
Sedláček, Jan ; Donát, Martin (referee) ; Dušek, Daniel (advisor)
This Master thesis describes the design of methodology for calculating the critical speed of rotating electric machines. The aim is to build finite element model of rotor system model, determine the natural frequencies to plot Campbell diagram and use this diagram to obtain the critical speeds. The Matlab software is used for this purpose and the Ansys software is used for verify the calculation.
Modal analysis of turbine wheel for aircraft engine
Drahý, Jan ; Nehybka, Jindřich (referee) ; Malenovský, Eduard (advisor)
The master thesis deals with modal analysis of turbine wheel of aircraft engine. The first part is concerned with the modal analysis of the computational model of turbine wheel and separated turbine blade using the cyclic symmetry of the ANSYS software. This part of the thesis set the task of determining the natural frequency depending on the operating parameters of the motor. The second part of the thesis occupies with the experimental simulation of the task. The results of experimental simulation are verified and compared with the results from the computational modal analysis. The goal is to create a Campbell diagram and to determine the intervals of the critical revolution of the turbine wheel.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.